If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 18c2 + 38c + 6 = 0 Reorder the terms: 6 + 38c + 18c2 = 0 Solving 6 + 38c + 18c2 = 0 Solving for variable 'c'. Factor out the Greatest Common Factor (GCF), '2'. 2(3 + 19c + 9c2) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(3 + 19c + 9c2)' equal to zero and attempt to solve: Simplifying 3 + 19c + 9c2 = 0 Solving 3 + 19c + 9c2 = 0 Begin completing the square. Divide all terms by 9 the coefficient of the squared term: Divide each side by '9'. 0.3333333333 + 2.111111111c + c2 = 0 Move the constant term to the right: Add '-0.3333333333' to each side of the equation. 0.3333333333 + 2.111111111c + -0.3333333333 + c2 = 0 + -0.3333333333 Reorder the terms: 0.3333333333 + -0.3333333333 + 2.111111111c + c2 = 0 + -0.3333333333 Combine like terms: 0.3333333333 + -0.3333333333 = 0.0000000000 0.0000000000 + 2.111111111c + c2 = 0 + -0.3333333333 2.111111111c + c2 = 0 + -0.3333333333 Combine like terms: 0 + -0.3333333333 = -0.3333333333 2.111111111c + c2 = -0.3333333333 The c term is 2.111111111c. Take half its coefficient (1.055555556). Square it (1.114197532) and add it to both sides. Add '1.114197532' to each side of the equation. 2.111111111c + 1.114197532 + c2 = -0.3333333333 + 1.114197532 Reorder the terms: 1.114197532 + 2.111111111c + c2 = -0.3333333333 + 1.114197532 Combine like terms: -0.3333333333 + 1.114197532 = 0.7808641987 1.114197532 + 2.111111111c + c2 = 0.7808641987 Factor a perfect square on the left side: (c + 1.055555556)(c + 1.055555556) = 0.7808641987 Calculate the square root of the right side: 0.883665207 Break this problem into two subproblems by setting (c + 1.055555556) equal to 0.883665207 and -0.883665207.Subproblem 1
c + 1.055555556 = 0.883665207 Simplifying c + 1.055555556 = 0.883665207 Reorder the terms: 1.055555556 + c = 0.883665207 Solving 1.055555556 + c = 0.883665207 Solving for variable 'c'. Move all terms containing c to the left, all other terms to the right. Add '-1.055555556' to each side of the equation. 1.055555556 + -1.055555556 + c = 0.883665207 + -1.055555556 Combine like terms: 1.055555556 + -1.055555556 = 0.000000000 0.000000000 + c = 0.883665207 + -1.055555556 c = 0.883665207 + -1.055555556 Combine like terms: 0.883665207 + -1.055555556 = -0.171890349 c = -0.171890349 Simplifying c = -0.171890349Subproblem 2
c + 1.055555556 = -0.883665207 Simplifying c + 1.055555556 = -0.883665207 Reorder the terms: 1.055555556 + c = -0.883665207 Solving 1.055555556 + c = -0.883665207 Solving for variable 'c'. Move all terms containing c to the left, all other terms to the right. Add '-1.055555556' to each side of the equation. 1.055555556 + -1.055555556 + c = -0.883665207 + -1.055555556 Combine like terms: 1.055555556 + -1.055555556 = 0.000000000 0.000000000 + c = -0.883665207 + -1.055555556 c = -0.883665207 + -1.055555556 Combine like terms: -0.883665207 + -1.055555556 = -1.939220763 c = -1.939220763 Simplifying c = -1.939220763Solution
The solution to the problem is based on the solutions from the subproblems. c = {-0.171890349, -1.939220763}Solution
c = {-0.171890349, -1.939220763}
| 2x+2(3x+16)=80 | | 27/1125 | | 5-2x=4x-101 | | 2x+4(2x+3)=132 | | cos(5x)=1 | | 1-2x=3x-79 | | 7n^2+30=-47n | | -3/5(15x-5y) | | 2x^4+11x^3+5x^2=0 | | 5x+1=3x+45 | | 9/1(-5/3)= | | 6y+39=3y | | 5x+2(x-4)=5x+2-10 | | 7x+4(x-17)=31 | | 4s-5=14 | | 7p^2-12=-8p | | 8xy-6x= | | y=(y*y)/7 | | 16*9=10x | | 5x-[2x-3(X-2)]=3x+12 | | y=(yxy)/7 | | (3x-7)(4x-5)= | | 1/7y=1 | | (-x^2)-2x=0 | | (7+V)(3v-8)=0 | | log(7x+1)=3 | | 5x+4(5x-7)=122 | | (10y-15)/3y=3 | | 8v^2+5=41v | | 2x+6(2x-4)=116 | | y=100+8.25(1) | | t^2-27t=0 |